

Spirent TestCenter

Sending Traffic from Directly and Non-Directly connected Subnets

Spirent TestCenter Functions

- PGA: Packet Generation/Analysis
- Emulation Protocol Support (e.g., BGP and PPP)
- ALP: Application Layer Protocols (e.g., TCP and HTTP)
- Avalanche: full TCP and application layer support
- All chassis support all functions; some modules are limited

PGA: Packet Generation/Analysis

- Layer 2, 3, and Layer 4+ headers
- IP layer emulation: ARP/ND and Ping
- Performance and QoS Testing
- Capture and Error Generation

Emulation Protocol Support

ALP: Application Layer Protocols

- Enables integrated Layer 2-7 Testing
- Supports Stateful TCP
- Limited HTTP, FTP, and SIP
- Video Quality Analysis (VQA)

What You Will Learn

- This demonstration will introduce you to the techniques to send traffic from directly and non-directly connected subnets*
- During this Demonstration you will learn the following:
 - How to Emulate directly connected Devices
 - How to Emulate non-directly connected Devices using Topology Emulation
 - How to use Topology Emulation to associate an L3 Device behind an L3 Device using a L3 Forwarding Link
 - How to send PGA and ALP traffic from directly and nondirectly connected Devices
 - How to use Routing Emulation to send PGA traffic from advertised Routes

*NOTE: A subnet can be represented as a Device or Route with Spirent TestCenter

Topology Diagram - Physical Setup

 2 Spirent TestCenter Ports connected to 2 Ports on the DUT (Device Under Test)

Test Port 1 Test Port 2

Directly Connected Devices

Emulate directly connected Devices and send PGA and ALP traffic

Test Port 1 Test Port 2

PGA and ALP Traffic - - - - · SPIREN

Topology Diagram - Logical Setup

- Port 1, VLAN ID 100
 - IP subnet 100.0.0.0/30
 - DUT Interface IP 100.0.0.1
 - STC Directly Connected Device IP 100.0.0.2
- Port 2, VLAN ID 200
 - IP subnet 200.0.0.0/30
 - DUT Interface IP 200.0.0.1
 - STC Directly Connected Device IP 200.0.0.2

Non-directly Connected Devices

 Use Topology Emulation (TE) to support non-directly connected Devices and send PGA and ALP traffic

Test Port 1 Test Port 2

PGA and ALP Traffic - - - - ·

Topology Diagram - Logical Setup

- Port 1, VLAN ID 100
 - IP subnet 100.0.0.0/30
 - DUT Interface IP 100.0.0.1
 - STC Directly Connected Device IP 100.0.0.2
 - STC Non- Directly Connected Device IP 10.0.0.2
- Port 2, VLAN ID 200
 - IP subnet 200.0.0.0/30
 - DUT Interface IP 200.0.0.1
 - STC Directly Connected Device IP 200.0.0.2
 - STC Non- Directly Connected Device IP 20.0.0.2
- Static routes in DUT
 - IP route 10.0.0.0/8 next hop 100.0.0.2
 - IP route 20.0.0.0/8 next hop 200.0.0.2

Using Routing Emulation

 Use Routing Emulation to send PGA traffic from advertised routes (PGA traffic only, not ALP)

Test Port 1 Test Port 2

PGA Traffic only - - - -

Topology Diagram - Logical Setup

- Port 1, VLAN ID 100
 - IP subnet 100.0.0.0/30
 - DUT Interface IP 100.0.0.1
 - STC Router Device IP 100.0.0.2
 - OSPF Area 0
 - Advertised routes: 101.0.1.0/24 101.0.5.0/24
- Port 2, VLAN ID 200
 - IP subnet 200.0.0.0/30
 - DUT Interface IP 200.0.0.1
 - STC Router Device IP 200.0.0.2
 - BGP DUT AS 1 and STC AS 2
 - Advertised routes: 201.0.1.0/24 201.0.5.0/24

Thank You

www.spirentcampus.com